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Calculation of elastic properties of natural fibers
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This article deals with the calculation of the elastic properties of cellulose based natural
fibers by using two different types of idealization and assumptions. One model (model A)
bases on antisymmertrical laminated structure, while the second one (model B) bases on a
thick laminated composite tube model. Model B is able to take into account the elliptic
geometry, the hollow based structure of the cross section of the fiber cell. The calculated
relationships between spiral angle and modulus in fiber axis by model A fits successful
experimental data for holocellulose fibers which were published elsewhere. In general,
modulus in fiber axis decreases with increasing spiral angle as well as the degree of
anisotropy, while shear modulus reaches a maximum for a spiral angle of 45◦. Fiber cell
modulus increases linear with increasing cellulose content for both, the calculated
(model A) and measured values. The correlation between experimental data and calculation
ones was not as high as in the case of modulus versus spiral angle. The discrepancy
between model A and a more real cross section is calculated (model B) with roughly 30%.
C© 2001 Kluwer Academic Publishers

1. Introduction
In the search for an understanding of the elasticity of
natural and wood fibers, it is essential to derive theoret-
ical tools to link the structure and mechanical proper-
ties of the components into a comprehensive composite
model.

In recent years, such structure-property models had
been described in terms of various models of structural
arrangements of their components [1–9].

One of the first theories had been presented by
Hearle [1], where a mechanics of extension of fibers
was considered in terms of a spiral arrangement of
crystalline fibrils embedded in the non-crystalline ma-
trix on a two-phase level, by taking into account layer
S2. Hearle considered, that on extension of the fiber,
the deformation might occur by an increase in length
of fibrils and of the non-crystalline regions in between
and by extension like a spiral spring, with bending and
twisting of the fibrils. This model was developed and
used by Hearle in some of his next papers [2–4].

A cell-wall laminated model of a natural (wood) fiber
had been presented by Salmén and de Ruvo [6] and
Salmén et al. [7]. They modelled the structure of a sin-
gle wood fiber cell as multilayer material with layers
of cellulose microfibrils at different angles with respect
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to the fiber axis. It is suggested that the wood fiber is
a composite of the three polymers cellulose, hemicel-
lulose and lignin, in which the unidirectional cellulose
microfibrils constitute the reinforcing elements in the
matrix blend of hemicellulose and lignin. The structure
of such a fiber was built as multi-ply construction with
layers P, S1, S2 and S3 of cellulose microfibrils at differ-
ent angles to the fiber axis. In this model, well-beaten
fiber was able be considered to be collapsed, i.e., the
square fiber has been flattened so that its inner surfaces
contact each other. In this case, the angle of the fibrils
in a layer in the front fiber wall is opposite to that in the
back fiber wall. Thus the fiber was able to be viewed
as an anti-symmetric laminate by using classical lam-
inated theory for estimating the elastic properties of
such fiber structure.

Koponen et al. [8, 9] calculated the elastic constants
of the cell wall with equitations derived from a 3-
dimensional case, where the layered media was re-
placed by an equivalent homogeneous material. In this
model the cell wall, in similar as in [6, 7], consists from
the layers P, S1, S2 and S3, where two adjacent cell walls
were examined as a unit.

A overview about the developments in cell wall mod-
els are given by Salmén et al. [6]. Some typical spiral
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T ABL E I Cellulose content and spiral angle of different natural
fibers [10–12]

Spiral angle Cellulose content
Fiber [◦] [wt.-%]

Banana 11 65
Coir 30–49 43
Flax 6–10 64–71
Hemp 6 —
Jute 8 61–72
Pineapple 8–14 81
Sisal 10–25 66–70
Ramie 8 69–83

angles and cellulose contents of different natural fibers
are given in Table I.

2. Developed models and modelling
2.1. Basic idea
With regard to the fact that natural fibers (e.g., wood
fibers [13]) possess a finite hole in the centre of the
cell, the fiber structure has a finite width and rather
substantial thickness (Fig. 1 for a jute fiber for instance).
It means that a laminated fiber model (using classical
laminated theory) is far from the realistic structure of a
natural fiber.

Because of this, two structural based models for a
natural fiber cell are presented throughout this study.
For both models the structure according to Fig. 2 was
used. The layers S1 up to S3 consist of cellulose mi-
crofibrils embedded in the matrix of hemicellulose and
lignin by taking into account the different spiral angles
and layer thickness of each of the layers.

In the case of the laminated plate model, a 8-layer
antisymmetrical laminated structure (P, S1, S2, S3, S3,
S2, S1, P) is considered. Because the state of stress in
the laminate under loading is three dimensional, it is

Figure 1 SEM study on jute fiber.

Figure 2 Illustration of one single fiber cell as general model for mod-
elling based on [2, 6, 7, 12,14].

necessary to formulate three dimensional stress-strain
relationships. Taking into account the lumen (as hole),
a more realistic model seems to be the thick laminated
composite tube model. In the laminated tube model, the
natural fiber is considered as thick laminated compos-
ite tube, which consists of four layers (P, S1, S2, and
S3). In this case, finite element method is used for the
calculation. Here, each layer of the fiber cell has been
modelled as a three-dimensional finite element. In our
case, the FEM-program has been developed estimating
the longitudinal elastic modulus and longitudinal stiff-
ness, respectively, for a natural fiber cell with an elliptic
cross section. The FEM-program further allows to cal-
culate the elastic properties for a geometrical range of
the cross section

0.1 ≤ b/a ≤ 1,

where a is the largest half axes of the ellipse and b is
the smallest half axes of the ellipse. If b/a = 1, than
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T ABL E I I Elastic properties of cellulose, hemicellulose, and lignin
[6, 7, 14]

E11 E22 G12 ν12

[kN/mm2] [kN/mm2] [kN/mm2] [/]

Cellulose I 134 27.2 4.4 0.1
74–168

Hemicellulose 8 4 2 0.2
Lignin 4 4 1.5 0.33

the cross section of fiber cell is circular. If b/a = 0.1,
than the results of the FEM modelling strive to the re-
sults of the results from the 8-layered antisymmetrical
laminated model.

2.2. Modelling
As mentioned before, two models were developed and
discussed in this paper for estimating the elastic prop-
erties of a natural fiber from the properties of its poly-
meric constituents: lignin, cellulose and hemicellulose
(Table II).
A. Laminated plate model
In this model, a natural fiber cell (Fig. 2) is considered
as antisymmetrical laminated structure

(
βlignin/βS1/βS2/βS3/−βS3/−βS2/−βS1/−βlignin

)

with the constitutive relations as [15, 16]:
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or

{N } = [D]{E}
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and components of axial forces (Nxx , Nyy, Nxy), mo-
ments (Mxx , Myy, Mxy) and shear forces (Qy, Qx ) of
the laminated structure are defined in a standard way.

Here, A(L)
i j is defined as the stiffness of the L-th

lamina, zL as the co-ordinate of the laminas, �xx ,

�yy, 2�xy are membrane strains, χxx , χyy, 2χxy are
bending curvatures, and 2�y3, 2�x3 are shear strains
[15, 16].

The effective elastic constants of a natural fiber (as
laminated structure) can be determined by the inverse
matrix of [D] from Equation A1

[d] = [D]−1 (A2)

This inverse matrix takes into account the stress cou-
pling that may occur from various orientations of fibrils
and variation of fiber structure. The effective moduli of
‘laminated’ fiber structure are

Ex = 1

hq11
, Ey = 1

hq22
, Gxy = 1

hq66
,

νxy = − Exq12

h
(A3)

here, h is the total thickness of the structure and
q11, q22, q12, q66 are taken from matrix [d]

[d] =




q11 q12 q16 b11 b12 b16 0 0

q22 q26 b12 b22 b26 0 0

q66 b16 b26 b66 0 0

d11 d12 d16 0 0

d22 d26 0 0

symm. d66 0 0

q44 q45

q55




B. Thick laminated tube model
Taking into account the fact that the structure of a fiber
cell has a ‘hole’ (lumen) and substantial thickness, us-
ing a thick laminated composite tube model seems to
be more realistic. For this, the natural fiber cell is con-
sidered as thick laminated tube with four layers

(
βlignin/βS1/βS2/βS3

)
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It is further considered that the cell, which consists of an
anisotropic homogeneous medium, exhibits the same
strain energy U eq in deformation state as actual natural
fiber U (as laminated material), thus

U = U eq (B1)

Let us denote the macro strains of a fiber as homoge-
neous medium by Ei j and corresponding macro stresses
by 	i j , then the deformation energy of a natural fiber
can be treated as equivalent material (macro homoge-
neous body) as follows

U eq = 1

2

∫
V

	i j Ei j dV = 1

2

∫
V

Si jkl	i j	kl dV

(B2)

where Si jkl are compliance tensors [17].
On the other hand, the deformation energy of a natu-

ral fiber (thick laminated composite tube as nonhomo-
geneous medium) is computed using FEM. In this case,
the corresponding deformation energy can be derived
from

U = 1

2

∫
V

σi jεi j dV (B3)

where σi j and εi j are the micro stresses and micro
strains in a fiber, respectively.

For example, to determine the elastic constant Ex ,
the following boundary conditions must be considered

	xx = 1; 	yy = 	zz = 	xy = 	xz = 	yz = 0
(B4)

Taking into account (B2, B3) and boundary conditions
(B4), Equation B1 can be rewritten as

1

2
Sxx (	xx )2V = 1

2

(	xx )2

Ex
V = U (B5)

where U is the deformation energy of a natural fiber
(calculated by FEM) for the boundary conditions (B4).
Because the stress state in these layers under loading
will be a 3-D one, three-dimensional curved isopara-
metric solid finite elements with 20 nodal points [18]
were used for modelling the natural fiber. From (B5)
follows

Ex = (	xx )2V

2U
(B6)

3. Results and discussion
3.1. Spiral angle dependency
Since the S2 layer of the cell wall represents such a large
proportion of the fiber wall, the spiral angle of this layer
will have a pronounced influence on the properties of
the fiber. This fact was clearly demonstrated in earlier
papers [1–4, 6].

For pure cellulose a modulus from 74–168 kN/mm2

with respect to fibril axis (Table II) is given [12, 14].
This range is based on different experimental or theo-
retical methods used. Because the real cellulose mod-
ulus inside the fiber is not known, the presented results

Figure 3 Correlation between the calculated and measured [6] elastic
modulus (cellulose content = 65 wt.-%, spiral angle of S1 and S3 = 70◦,
relative thickness of the layers: P = 8%, S1 = 8%, S2 = 76%, S3 = 8%).
(a) Comparison with holocellulose fiber data [6]. (b) Comparison to
Hearle’s equations.

of our calculations are given for the above-mentioned
possible range.

Fig. 3a illustrates together with some experimental
data for holocellulose fibers [6] the calculated elastic
modulus by using model A, assuming that the fibers
were lignin-free with a cellulose content of 65 wt.-%
typical for natural fibers (Table I). The relative thickness
of the different layers were chosen to P = 8%, S1 = 8%,
S2 = 76%, and S3 = 8%. It can be seen in general, that
the elastic modulus decreases with increasing spiral an-
gle. The shape of the calculated curves is very similar
to that published by Salmén et al. [6]. By comparing
calculated and experimental data, a good correlation
between both was obtained.

A further comparison with the well-known Hearle’s
equations [1–4] which only take into account the de-
formation mechanisms of the S2 layer as the thickest
one (with 76% of the whole fiber) with the calculated
values by model ‘A’ is given in Fig. 3b. It can be seen
for small spiral angles that the calculated values with
model A are lower than in the case for Hearle’s model
because of the typically much higher real spiral angles
for the S1 and S3 layers than for S2. For different wood
species spiral angles for S1 = 50◦ to 70◦, S2 = 10◦, and
S3 = 60◦ to 90◦ are published [5]. For natural fibers spi-
ral angles for the S2 layers (Table I) between 6–10◦ for
jute, flax and hemp as the stiffest fibers, up to 10–22◦
for sisal, and 30–49◦ for coir are published [10, 11]. As
already stated by Hearle, the curve shapes for spiral an-
gles above 20◦ and 45◦ for isochoric deformations and
isochoric + constant fibril length model, respectively,
are not very close to the measured data, for instance
according to Salmén et al. [6, 7].

As discussed previously, model A is based on lam-
inated plate theory and is not able to consider the
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Figure 4 Comparison between model A and B (cellulose
content = 53 wt.-%, spiral angle of S1 and S3 = 70◦, relative
thickness of the layers: P = 8%, S1 = 8%, S2 = 76%, S3 = 8%,
Ecellulose = 134 kN/mm2).

Figure 5 Influence of spiral angle on the degree of anisotropy and
shear modulus of a natural fiber cell calculated by model A (cellulose
content = 65 wt.-%, spiral angle of S1 and S3 = 70◦, relative thickness
of the layers: P = 8%, S1 = 8%, S2 = 76%, S3 = 8%).

elliptical cross section of the fiber, while model B does.
If b/a = 0.1, the cross section and results of the calcu-
lations of model B strive to the results of model A with
smaller differences which base on these geometrical
aspects (Fig. 4).

The calculations of the degree of anisotropy of a nat-
ural fiber cell by using model A is shown in Fig. 5. It
can be seen that the degree of anisotropy ranges from
2.2 up to 3.6 for a spiral angle of 0◦ dependent of cellu-
lose modulus used, while an increasing angle leads to a
general decrease in anisotropy. For spiral angles higher
than approximately 30◦, the difference in the degree
of anisotropy is more or less independent on cellulose
modulus used.

Furthermore, shear modulus, Gxy , versus spiral an-
gle is also shown in Fig. 5. For spiral angles close to 0◦
a modulus of approximately 5 kN/mm2 was calculated
which is nearly independent of cellulose modulus used.
Increasing spiral angle leads to an increase in shear
modulus with an expected maximum at a spiral angle
of 45◦. By using 168 kN/mm2 as cellulose modulus, the
theoretical maximum shear modulus was calculated to
16 kN/mm2, while using 74 kN/mm2 as cellulose mod-
ulus resulted in a value of approximately 10 kN/mm2.

3.2. Cellulose content dependency
Cellulose content is the second important structure
property which affects significantly the overall mechan-
ical properties of natural fibers. Typically, experimental

Figure 6 Correlation between the calculated and measured [10, 11] elas-
tic modulus dependent on cellulose content. (Calculation: spiral angle
of S1 = S3 = 70◦ and S2 = 10◦, relative thickness of the layers: P = 8%,
S1 = 8%, S2 = 76%, S3 = 8%, model A).

data [10, 11] were fitted by a trend line which from a
theoretical point of view is based on a linear rule of
mixture. A similar linear trend for fiber cell modulus
with respect to fiber axis was calculated by using model
A as shown in Fig. 6. These calculations were done with
a spiral angle of the S2 layers with 10◦ for jute, hemp
or flax fibers. This spiral angle was chosen because it
is well-known from x-ray analysis that this angle is ap-
proximately that of the stiffest natural fibers which are
flax and hemp as well as jute.

Fig. 6 further illustrates a general comparison of fiber
modulus Ex between calculated and experimental data
of different types of natural fibers [16], neglecting other
structural features like spiral angle. This neglect leads
to the large spread of modulus for a given cellulose con-
tent. By using 74 kN/mm2 for cellulose modulus, the
curve is seen to fit the experimental data successfully.

In the previous chapter, the effects of the spiral angle
on the fiber cell modulus was discussed in detail and it
seems to be necessary to take these into consideration.
The calculations in Fig. 6 were done for the structural
parameters which are typical for jute and flax fibers.
Comparing the experimental data of these two fibers
with the calculated values shows that the theoretical
calculated values are higher or much higher, dependent
on cellulose modulus used, than the measured ones.

As shown in Fig. 6, real cellulose content of natural
fibers stirs between approximately 40 up to 90 wt.-%. In
this range, the calculated degree of anisotropy is, from
the theoretical point of view, more or less independent
of cellulose content for both cellulose modulus val-
ues used (Fig. 7). Shear modulus increases linear with
increasing cellulose content with higher characteristic
values for the higher cellulose modulus.

3.3. Dependency of cross section
The geometrical nature of natural fibers is typi-
cally based on an elliptic cross-section [2, 6, 7, 12, 14],
schematically drawn in Fig. 2. Due to this fact, Fig. 8
illustrates the influence of the elliptical degree on the
fiber cell’s modulus in fiber axis. It can be seen that this
characteristic value is greatly affected up to a geometry
of b/a = 0.4 but is more or less constant afterwards.
From practical point of view it is interesting to mention
that the elastic modulus of the fiber cell is lower for
circular cross section based fibers than for fibers with
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Figure 7 Influence of cellulose content on fiber cell anisotropy and shear
modulus (spiral angle of S1 = S3 = 70◦ and S2 = 10◦, relative thickness
of the layers: P = 8%, S1 = 8%, S2 = 76%, S3 = 8%, model A).

Figure 8 Influence of cell geometry and half axis size on the fiber cell
moduls calculated by model B (cellulose content = 53 wt.-%, spiral angle
of S1 = S3 = 70◦, S2 = 20◦, relative thickness of the layers: P = 8%,
S1 = 8%, S2 = 76%, S3 = 8%, Ecellulose = 134 kN/mm2).

a cross section with a high elliptic degree, i.e., small
b/a-values.

From literature [2, 6, 7, 12,14] and the SEM study on
jute fibers (Fig. 1) could be seen that a realistic b/a
value should be higher than 0.6. Due to this fact, the
studies by using model A about the effects of spiral
angle and cellulose content on elastic properties in the
previous sections are approximately 30% too high. This
could be a further reason for the results in Fig. 6 and the
poorer agreement between calculated and experimental
data.

Nevertheless, tendencies between structural param-
eters and elastic properties are not influenced by this.

4. Conclusions
Two models were developed to calculate the elastic
properties of natural fibers. Model A based on anti-
symmertrical laminated structure, while model B based
on a thick laminated composite tube model. Model B
was able to take into account the elliptic geometry and
hollow structure of the cross section of the fiber cell.

The calculated relationships between spiral angle and
modulus in fiber axis by model A fitted successful ex-
perimental data for holocellulose fibers which were
published elsewhere. The correlation with model A was
much better as was found by using Hearle’s equations,
because Hearle’s theory only took into account the para-
maters of the S2 layers.

In general, modulus in fiber axis decreases with in-
creasing spiral angle as well as the degree of anisotropy,

while shear modulus reached a maximum value for a
spiral angle of 45◦.

Fiber cell modulus increases linear with increasing
cellulose content for both, the calculated (model A) and
measured values. The correlation between experimen-
tal data and calculation was not a high as was shown
in the case of modulus versus spiral angle. This may
be explained by the fact, that the nature of a fiber cell
is not as elliptic as supposed by the model A as SEM
studies showed. The discrepancy between model A and
a more real cross section was calculated (model B) with
approximately 30%.

Furthermore, the degree of anisotropy is only slightly
affected by the cellulose content in the range between
35 and 90%, which is the typical content for most nat-
ural fibers.
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